7,631 research outputs found

    From anomalous energy diffusion to Levy walks and heat conductivity in one-dimensional systems

    Full text link
    The evolution of infinitesimal, localized perturbations is investigated in a one-dimensional diatomic gas of hard-point particles (HPG) and thereby connected to energy diffusion. As a result, a Levy walk description, which was so far invoked to explain anomalous heat conductivity in the context of non-interacting particles is here shown to extend to the general case of truly many-body systems. Our approach does not only provide a firm evidence that energy diffusion is anomalous in the HPG, but proves definitely superior to direct methods for estimating the divergence rate of heat conductivity which turns out to be 0.333±0.0040.333\pm 0.004, in perfect agreement with the dynamical renormalization--group prediction (1/3).Comment: 4 pages, 3 figure

    ac-driven atomic quantum motor

    Full text link
    We invent an ac-driven quantum motor consisting of two different, interacting ultracold atoms placed into a ring-shaped optical lattice and submerged in a pulsating magnetic field. While the first atom carries a current, the second one serves as a quantum starter. For fixed zero-momentum initial conditions the asymptotic carrier velocity converges to a unique non-zero value. We also demonstrate that this quantum motor performs work against a constant load.Comment: 4 pages, 4 figure

    An evolution equation as the WKB correction in long-time asymptotics of Schrodinger dynamics

    Full text link
    We consider 3d Schrodinger operator with long-range potential that has short-range radial derivative. The long-time asymptotics of non-stationary problem is studied and existence of modified wave operators is proved. It turns out, the standard WKB correction should be replaced by the solution to certain evolution equation.Comment: This is a preprint of an article whose final and definitive form has been published in Comm. Partial Differential Equations, available online at http://www.informaworld.co

    Mapping the Arnold web with a GPU-supercomputer

    Full text link
    The Arnold diffusion constitutes a dynamical phenomenon which may occur in the phase space of a non-integrable Hamiltonian system whenever the number of the system degrees of freedom is M≥3M \geq 3. The diffusion is mediated by a web-like structure of resonance channels, which penetrates the phase space and allows the system to explore the whole energy shell. The Arnold diffusion is a slow process; consequently the mapping of the web presents a very time-consuming task. We demonstrate that the exploration of the Arnold web by use of a graphic processing unit (GPU)-supercomputer can result in distinct speedups of two orders of magnitude as compared to standard CPU-based simulations.Comment: 7 pages, 4 figures, a video supplementary provided at http://www.physik.uni-augsburg.de/~seiberar/arnold/Energy15_HD_frontNback.av
    • …
    corecore